SLAM
Table of Contents
- 1. ☰
- 1.1. Meta Notes
- 1.2. Books
- 1.2.1. DONE Combo #1
- 1.2.2. INPROGRESS Combo #2
- 1.2.3. DONE JavaScript: The Good Parts
- 1.2.4. DONE Domain Specific Languages
- 1.2.5. INPROGRESS Effective Java
- 1.2.6. DONE Don't Make Me Think
- 1.2.7. DONE Clean Code
- 1.2.8. INPROGRESS Deep Learning
- 1.2.9. INPROGRESS Async JavaScript
- 1.2.10. INPROGRESS ng-book2
- 1.2.11. INPROGRESS Combo #3: SLAM
- 2. GeekLiB/Lee-SLAM-source: SLAM 开发学习资源与经验分享
- 3. Multiple View Geometry in Computer Vision
- 3.1. 1. Introduction - a tour of multiple view geometry;
- 3.2. Part 0. The Background: Projective Geometry, Transformations and Estimation: (2018-05-01 ~ 2018-05-05)
- 3.3. Part I. Camera Geometry and Single View Geometry: (2018-05-06 ~ 2018-05-12)
- 3.4. Part II. Two-View Geometry: (2018-05-13 ~ 2018-05-19)
- 3.5. Part III. Three-View Geometry: (2018-05-20 ~ 2018-05-26)
- 3.6. Part IV. N -View Geometry: (2018-05-27 ~ 2018-06-02)
- 3.7. Part V. Appendices:
- 3.7.1. Appendix 1. Tensor notation;
- 3.7.2. Appendix 2. Gaussian (normal) and chi-squared distributions;
- 3.7.3. Appendix 3. Parameter estimation.
- 3.7.4. Appendix 4. Matrix properties and decompositions;
- 3.7.5. Appendix 5. Least-squares minimization;
- 3.7.6. Appendix 6. Iterative Estimation Methods;
- 3.7.7. Appendix 7. Some special plane projective transformations;
- 3.7.8. Bibliography;
- 4. State Estimation for Robotics
- 4.1. 1. Introduction (1~3)
- 4.2. 2. Primer on Probability Theory (1~3)
- 4.3. 3. Linear-Gaussian Estimation (1~3)
- 4.4. 4. Nonlinear Non-Gaussian Estimation (4~7)
- 4.5. 5. Biases, Correspondences, and Outliers (4~7)
- 4.6. 6. Primer on Three-Dimensional Geometry (4~7)
- 4.7. 7. Matrix Lie Groups (4~7)
- 4.8. 8. Pose Estimation Problems (8~10)
- 4.9. 9. Pose-and-Point Estimation Problems (8~10)
- 4.10. 10. Continuous-Time Estimation (8~10)
1 ☰
1.1 Meta Notes
1.2 Books
1.2.1 DONE Combo #1
1.2.3 DONE JavaScript: The Good Parts
1.2.4 DONE Domain Specific Languages
1.2.5 INPROGRESS Effective Java
1.2.6 DONE Don't Make Me Think
1.2.7 DONE Clean Code
1.2.8 INPROGRESS Deep Learning
1.2.9 INPROGRESS Async JavaScript
1.2.10 INPROGRESS ng-book2
1.2.11 INPROGRESS Combo #3: SLAM
3 Multiple View Geometry in Computer Vision
3.1 1. Introduction - a tour of multiple view geometry;
3.2 Part 0. The Background: Projective Geometry, Transformations and Estimation: (2018-05-01 ~ 2018-05-05)
3.2.1 2. Projective geometry and transformations of 2D;
3.2.2 3. Projective geometry and transformations of 3D;
3.2.3 4. Estimation - 2D projective transforms;
3.2.4 5. Algorithm evaluation and error analysis;
3.3 Part I. Camera Geometry and Single View Geometry: (2018-05-06 ~ 2018-05-12)
3.3.1 6. Camera models;
3.3.2 7. Computation of the camera matrix;
3.3.3 8. More single view geometry;
3.4 Part II. Two-View Geometry: (2018-05-13 ~ 2018-05-19)
3.4.1 9. Epipolar geometry and the fundamental matrix;
3.4.2 10. 3D reconstruction of cameras and structure;
3.4.3 11. Computation of the fundamental matrix F;
3.4.4 12. Structure computation;
3.4.5 13. Scene planes and homographies;
3.4.6 14. Affine epipolar geometry;
3.5 Part III. Three-View Geometry: (2018-05-20 ~ 2018-05-26)
3.5.1 15. The trifocal tensor;
3.5.2 16. Computation of the trifocal tensor T;
3.6 Part IV. N -View Geometry: (2018-05-27 ~ 2018-06-02)
3.6.1 17. N-linearities and multiple view tensors;
3.6.2 18. N-view computational methods;
3.6.3 19. Auto-calibration;
3.6.4 20. Duality; 21. Chirality;
3.6.5 22. Degenerate configurations;
3.7 Part V. Appendices:
3.7.1 Appendix 1. Tensor notation;
3.7.2 Appendix 2. Gaussian (normal) and chi-squared distributions;
3.7.3 Appendix 3. Parameter estimation.
3.7.4 Appendix 4. Matrix properties and decompositions;
3.7.5 Appendix 5. Least-squares minimization;
3.7.6 Appendix 6. Iterative Estimation Methods;
3.7.7 Appendix 7. Some special plane projective transformations;
3.7.8 Bibliography;
4 State Estimation for Robotics
4.1 1. Introduction (1~3)
4.1.1 A Little History
4.1.2 Sensors, Measurements, and Problem Definition
4.1.3 How This Book is Organized
4.1.4 Relationship to Other Books
{{{Part I: Estimation Machinery
4.2 2. Primer on Probability Theory (1~3)
4.2.1 Probability Density Functions
4.2.2 Gaussian Probability Density Functions
- Definitions
- Isserlis' Theorem
- Joint Gaussian PDFs, Their Factors ,and Inferecnce
- Statistically Independent, Uncorrelated
- Linear Change of Variables
- Normalized Product of Gaussians
- Sherman-Morrison-Woodbury Identity
- Passing a Gausion throught a Nonlinearity
- Shannon Information of a Gaussian
- Mutual Information of a Joint Gaussian PDF
- Cramer-Rao Lower Bound Applied to Gaussion PDFs
4.2.3 Gaussian Processes
4.2.4 Summary
4.2.5 Exercies
4.3 3. Linear-Gaussian Estimation (1~3)
4.3.1 Batch Discrete-Time Estimation
4.3.2 Recursive Discrete-Time Smoothing
4.3.3 Recursice Discrete-Time Filtering
4.3.4 Batch Continuous-Time Estimation
4.3.5 Summary
4.3.6 Exercises
4.4 4. Nonlinear Non-Gaussian Estimation (4~7)
4.4.2 Recursive Discrete-Time Estimation
- Problem Setup
- Bayes Filter
- Extended Kalman Filter
- Generalized Gaussian Filter
- Iterated Extented Kalman Filter
- IEKF Is a MAP Estimator
- Alternatives for Passing PDFs through Nonlinearities
- Particle Filter
- Sigmapoint Kalman Filter
- Iterated Sigmapoint Kalman Filter
- ISPKF Seeks the Posterior Mean
- Taxonomy of Filters
4.4.3 Batch Discrete-Time Estimation
4.4.4 Batch Continuous-Time Estimation
4.4.5 Summary
4.4.6 Exercises
4.5 5. Biases, Correspondences, and Outliers (4~7)
4.5.1 Handling Input/Measurement Biases
4.5.4 Summary
4.5.5 Exercises
Part II Three-Dimensional machery
{{{Part II: Three-Dimensional machinery
4.6 6. Primer on Three-Dimensional Geometry (4~7)
4.6.2 Rotations
4.6.5 Summary
4.6.6 Exercises
4.7 7. Matrix Lie Groups (4~7)
4.7.1 Geometry
4.7.3 Probabilty and Statistics
4.7.4 Summary
4.7.5 Exercises
Part III Applications
{{{Part III: Applications